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Abstract. We study the transport properties of a metallic ring threaded by a magnetic flux varying linearly
in time ΦM (t) = Φt with a constriction and connected to two external particle reservoirs. This setup
contains as limiting cases the experimental arrangements used to define Kubo and Landauer conductances.
We employ a formalism based in Baym-Kadanoff-Keldysh non-equilibrium Green functions to calculate
the conductance of the system and the dissipated power. We compare the transport behavior in different
limits of the geometrical configuration.

PACS. 72.10.Bg General formulation of transport theory – 73.40.Jn Metal-to-metal contacts – 73.40.Gk
Tunneling

1 Introduction

Landauer and Büttiker formalism to study electron trans-
port in 1D mesoscopic systems has been one of the
most successful theoretical ideas of condensed matter
physics [1,2]. In this description, a voltage V is applied
to the system under study by connecting it to two ex-
ternal reservoirs at different chemical potentials µα and
µβ = µα + eV . An scheme of the typical setup is de-
picted in Figure 1a. The concept of electron conduction
is related with the transmission properties of the sam-
ple as a response to the voltage V . In particular, at zero
temperature, the current flowing through the sample is
expressed as

JL =
2e

�

∫ µβ

µα

dωT (ω), (1)

where T (ω) is the transmission function. It is remarkable
that JL remains finite even for ideal noninteracting sys-
tems. The fact that a “perfect conductor” has a finite
resistance caused consternation in the community some
time ago and an important amount of work has been de-
voted to understand this issue [3,4]. In the first deriva-
tion, Landauer formula was slightly different from (1) and
the conductance was proportional to the quotient between
transmission and reflection coefficients [1]. It was later
clarified that such a definition corresponds to the ratio
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Fig. 1. (a) Scheme of the typical device considered to de-
fine Landauer conductance. The ends of the wire under study
are connected to two reservoirs with chemical potentials µα

and µβ . (b) Scheme of a device to define Kubo conductance.
The wire is closed at its ends to form a ring which is threaded
by a time-dependent magnetic flux. Inelastic scattering events
are introduced by coupling it to reservoirs through passive
leads that do not transport any current.

between the current flowing through the device and the
potential drop between the ends of the wire. The latter dif-
fers from the applied voltage V by an amount correspond-
ing to the potential drop due to the “contact” resistance
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[2,3]. The existence of such a resistance can be understood
by noting that the external reservoirs, besides establish-
ing a potential difference between the ends of the system,
introduce resistive behavior and energy dissipation. In an
ideal situation, an electron can propagate coherently along
the system. However, as soon as it travels through the
connecting lead and visits the particle reservoir, it exper-
iments inelastic scattering processes and losses its phase
coherence. This means that the function T (ω) does not re-
ally measure the conducting properties of the sample we
want to investigate, but those of a combined system which
consists of our sample in interaction with the reservoirs.

An alternative framework to study the transport prop-
erties of a quantum system is that leading to the cele-
brated Kubo formula for the electric conductivity. In this
approach the concept of conduction is related to the re-
sponse of the system to an external electric field [5]. Most
of the derivations and conclusions related to the appro-
priate way to define the conductance of a quantum wire
connected to leads at different potentials, were achieved by
recourse to linear response theory starting from an electric
field applied on the mesoscopic sample [4,6–9]. In spite of
the many subtleties related to the coupling to the semi-
infinite leads and the boundary conditions for the external
field, the main goal of those works has been to establish
the equivalence of Landauer and Kubo formulations for
geometrical setups like that of Figure 1a, suitably gen-
eralized to support additional channels and terminals in
some cases.

In the same spirit of Kubo approach, Büttiker, Imry
and Landauer [10] considered a 1D system closed at its
ends to form a ring and examined a situation where it is
pierced by a time-dependent magnetic flux. In this case,
a current is established, driven by the induced electric
field. For a linearly increasing magnetic flux ΦM (t) = Φt
and when the sample is an ideal noninteracting metal iso-
lated from the external world, it is found to display Bloch
oscillations with a vanishing mean value of the current
and a period depending on the magnitude of the induced
electric field E = (1/cL)dΦM (t)/dt and the length of the
circumference L. This feature is a consequence of the co-
herent nature of the charge propagation along the sys-
tem and in this sense, it could be interpreted as the time-
dependent counterpart of the Aharanov-Bohm oscillations
observed in mesoscopic rings threaded by static magnetic
fluxes [11]. An important conceptual difference between
both kinds of quantum oscillations is that in the time-
dependent problem, Bloch oscillations are related with
quanta of stored energy that can be dissipated when the
ring is put in contact with another system. In the most
general case, the interaction with the external world intro-
duces inelastic scattering processes in our wire and phase
coherence is broken when the carrier propagates beyond
a typical length. In addition, energy dissipation is associ-
ated with the existence of a dc-component in the current
flowing along the system. The idea that some resistance
is necessary to obtain a net nonvanishing current in this
device is in contrast with our intuition since it is natu-
ral to relate a “perfect conductor” with that capable of

transporting current with zero resistance. This important
conceptual point has been analyzed in the pioneer work
by Landauer and Büttiker [12] and has been further elab-
orated during the subsequent years [13–15].

Therefore, when a dissipative mechanism is included
as an ingredient of the annular driven system, a conduc-
tance can be defined as the response of the dc-current as
a function of the induced emf (e/c)dΦM (t)/dt. A concrete
way to introduce inelastic scattering events is to couple
the ring to external reservoirs. This idea was first pro-
posed by Büttiker to investigate the transport properties
of a mesoscopic metal loop threaded by a magnetic flux
with an harmonic dependence on time [16] and was later
considered in several other studies [17,18,21]. The idea of
bending the wire into a ring threaded by a time-dependent
magnetic flux, as a basic device to calculate the conduc-
tance as define by Kubo, has been recently employed in
non-interacting metallic systems with barriers [19,20]. In
the present work, we shall seek a geometry close to the de-
vice of Figure 1a, considering the ring coupled to particle
reservoirs through passive leads that allow inelastic scat-
tering without transporting current as indicated in Fig-
ure 1b. Although the contact with only one reservoir is
enough in order to introduce inelastic scattering events
in the problem [16,21], two reservoirs must be consider
in order to define an experimental arrangement with the
same “degree of inelastic scattering” of that introduced by
Landauer. There are recent works where this geometry has
been considered [18–20] and the issue Landauer vs. Kubo
definitions has been discussed in non-interacting systems
under ac-pumping and with disorder [18]. Our goal is to
study a simpler case where the flux varies in time following
a linear law in a system without disorder. As this problem
can be solved exactly, we can investigate further details of
the transport properties of this kind of devices.

In a recent paper [21] the problem of a metallic ring
of non-interacting electrons threaded by a magnetic flux
with a linear time-dependence and coupled to an external
reservoir was studied in the framework of nonequilibrium
Green functions. This formalism has been very successful
to derive generalized transport equations [22,23] in quan-
tum systems in contact with leads and reservoirs that are
described by Hamiltonians with and without an explicit
time dependence. One of its advantages is that the ef-
fect of leads and reservoirs can be concisely described by
means of self-energies with a finite imaginary part. Thus,
the associated concept of irreversibility is introduced in a
very natural way and features like the finite resistance of
a “perfect conductor” have a rather straightforward rep-
resentation. For the case of our simple device it is possible
to define a closed set of equations for the retarded Green
functions in real space which is amenable to be numer-
ically solved, yielding to the exact solution for the rele-
vant currents flowing through the system. In this work,
we adapt the treatment presented in [21] to the geometri-
cal configuration sketched in Figure 2, which contains the
two geometries of Figure 1 as limiting cases while also al-
lows for more general configurations interpolating between
them. We calculate the dc-component of the induced
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Fig. 2. Model for the general setup considered in our study.
The wire is described by a chain of N noninteracting tight-
binding electrons with hopping amplitude T . The contacts
with the reservoirs are represented by the hopping elements Tα

and Tβ . The hopping element T ′ represents a constriction for
T ′ < T .

current as a function of Φ and we compare with the pre-
dictions of Landauer scheme for an equivalent dc-voltage.
We also introduce a method to calculate exactly the dis-
sipated power and we obtain the behavior expected from
the Joule effect. Although the formalism is valid for any
strength of Φ, we focus on the range within the scope of
linear response theory.

The paper is organized as follows: In Section 2 we in-
troduce the model and we present the basic theoretical
treatment. Results are shown in Section 3 and Section 4
is devoted to summary and conclusions.

2 Theoretical treatment

We introduce a model for the setup sketched in Figure 2.
It consists on a ring with a constriction in one of the
arms, which is threaded by a magnetic flux with a linear
time-dependence ΦM (t) = Φt and connected to reservoirs
at different chemical potentials. We present the relevant
equations to describe the electron transport and we derive
the equations to compute the dissipated energy.

2.1 The model

We assume that the full system can be described by the
following Hamiltonian:

H = Hring(t) + Hα + Hβ + H1α + HNβ, (2)

where the first term, representing the ring, depends ex-
plicitly on time due to the presence of the time-dependent
flux. We consider noninteracting spinless electrons (the
spin does not play any relevant role in the physical prop-
erties we want study) described by a tight-binding model

with N sites and lattice constant a = L/N ,

Hring = −T

N−1∑
l=1

(
e−iφtc†l cl+1 + eiφtc†l+1cl

)

− T ′
(
e−iφtc†1cN + eiφtc†Nc1

)
. (3)

The time-dependent phase φt attached to each link, with
φ = Φ/(Φ0N), accounts for the presence of the external
magnetic flux. A different hopping element T ′ in the bond
labeled as 〈1, N〉 represents a constriction for T ′ < T . The
terms Hα and Hβ describe the left and right leads in con-
tact with particle reservoirs with chemical potentials µα

and µβ , respectively, while

H1α = −Tα

(
c†1cα + c†αc1

)
,

HNβ = −Tβ

(
c†Ncβ + c†βcN

)
, (4)

represent the connections between the ring and the leads
in contact to the reservoirs.

2.2 The currents

In order to calculate the current along the different parts
of the circuit, we use a treatment based on non-equilibrium
Green functions. We follow the same lines of reference [21]
and we defer the reader to this work and references therein
for further details.

In the framework of the formalism proposed by
Keldysh, the perturbation expansion has the same
structure as the formalism for equilibrium systems. The
different feature in the non-equilibrium case is that
the Green functions are contour-ordered rather than
time-ordered. As a consequence, the Dyson equation has
a matrix form and one must work with two independent
Green functions: the retarded Green function,

GR
i,j(t, t

′) = −iΘ(t − t′)
〈{

ci(t), c
†
j(t

′)
}〉

, (5)

and the lesser than Green function

G<
i,j(t, t

′) = i
〈
c†i (t)cj(t′)

〉
. (6)

The latter determines the mean values of the observables.
In particular, the current through a bond 〈i, j〉 is writ-
ten as

Ji,j =
2e

�
Re

[
TijG

<
i,j(t, t)

]
, (7)

where Tij is the corresponding hopping element.
After some algebraic manipulation on the Dyson

equation [22,23], the effect of the external leads and
reservoirs can be exactly written in terms of self-energy
corrections at the sites 1(N) of the tight-binding chain.
This represents the effect of the escape to the leads in
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contact with the reservoirs (systems α and β, respec-
tively). The ensuing retarded and lesser components of
these self-energies are

ΣR
1(N)(t − t′) =

∣∣Tα(β)

∣∣2 gR
α(β)(t − t′),

Σ<
1(N)(t − t′) =

∣∣Tα(β)

∣∣2 g<
α(β)(t − t′), (8)

where gR,<
α(β)(t − t′) are the retarded and lesser compo-

nents of the Green functions corresponding to the sys-
tems α(β), respectively. The numerical procedure to com-
pute the currents is simplified if the electronic structure
of each of these systems is assumed to be well described
by a constant density of states Γ (we assume that α and
β have the same band structure), and very large band-
widths. We also assume that the contacts are identical,
thus Tα = Tβ . Within such a model, the self energies re-
sult ΣR

1(N)(ω) = iσ, and Σ<
1(N)(ω) = ifα(β)(ω)σ, being

σ = |Tα|2Γ . The Fermi functions fα(β)(ω) depend on the
chemical potentials µα, µβ and temperatures of the reser-
voirs. For sake of simplicity, we assume that these tem-
peratures are equal to zero. Thus, fα(ω) = Θ(ω − �

−1µα)
and fβ(ω) = Θ(ω − �

−1µβ). A remarkable issue is that
the self-energies have an imaginary part. This feature in-
dicates that the presence of leads and reservoirs introduces
dissipative effects in the problem. We recall that without
this ingredient, the dc-component of the current vanishes
and only Bloch oscillations take place [10,12,21].

It is convenient [21] to perform a gauge transformation
in the fermionic operators of the Hamiltonian (3),

cn = exp[inφt]cn, (9)

according to which the Green function for the posi-
tions m, n on the ring transforms as

GR
m,n(t, t′) = exp [iφ(mt − nt′)] G

R

m,n(t, t′), (10)

while the Hamiltonian must be transformed to

Hring = H0 + H1N (t)

= −T

N−1∑
l=1

(
c†l cl+1 + c†l+1cl

)
+

N∑
l=1

Vlc
†
l cl

−
(
T1N (t)c†1cN + TN1(t)c

†
Nc1

)
, (11)

where T1N (t) = [TN1(t)]∗ = T ′e−iΦt while Vl = �φl is the
scalar potential due to the induced electric field. In this
way, the explicit time-dependent part of the Hamiltonian
is confined to a single bond. The currents are, of course,
gauge-invariant quantities and the final expressions for the
ones between the ring and the reservoirs, and that along

the bond 〈l, l + 1〉 of the ring, are found to be

J1,α(t) =
2e

�
σ

∫ +∞

−∞

dω

2π

[
fα(ω − φ)

(
Im

[
G

R

1,1(t, ω)
]

+ σ
∣∣∣GR

1,1(t, ω)
∣∣∣2

)
+ σfβ

(
ω − Φ

Φ0

)

×
∣∣∣GR

1,N (t, ω)
∣∣∣2

]
,

JN,β(t) =
2e

�
σ

∫ +∞

−∞

dω

2π

[
fβ

(
ω − Φ

Φ0

) (
Im

[
G

R

N,N(t, ω)
]

+ σ
∣∣∣GR

N,N(t, ω)
∣∣∣2

)
+σfα(ω−φ)

∣∣∣GR

N,1(t, ω)
∣∣∣2

]
,

Jl,l+1(t) =
2eTl,l+1

�
σ

∫ +∞

−∞

dω

2π
Im

[
fα(ω − φ)G

R

l,1(t, ω)

× G
A

1,l+1(ω, t) + fβ

(
ω − Φ

Φ0

)
G

R

l,N (t, ω)

× G
A

N,l+1(ω, t)
]
, (12)

where GA
i,j(ω, t) = [GR

j,i(t, ω)]∗ is the advanced Green
function, while the Fourier transform of the retarded
Green function is defined as,

GR
i,j(t, ω) =

∫ t

−∞
dt′ei(ω+iη)(t−t′)GR

i,j(t, t
′), (13)

with η = 0+. The hopping element is Tl,l+1 = T if
l = 1, . . . , N − 1 and Tl,l+1 = T ′ if l = N . Note that
the gauge transformation introduces frequency shifts and
that the effective chemical potentials in the expressions for
the currents are µeff

α = µα + �φ and µeff
β = µβ + �Φ/Φ0.

The practical calculation of the currents requires the eval-
uation of the retarded Green functions. A summary of the
procedure is given in Appendix A.

It is useful to write the current along the ring as

Jl,l+1(t) =
2eTl,l+1

�
σ

∫ +∞

−∞

dω

2π
T (t, ω, ∆), (14)

where we define the “transmission” function as

T (t, ω, ∆) = Im
[
(fα(ω − φ)G

R

l,1(t, ω)G
A

1,l+1(ω, t)

+ fα(ω − ∆)G
R

l,N (t, ω)G
A

N,l+1(ω, t)
]
, (15)

being ∆ = �
−1eV +Φ/Φ0, where eV is the potential differ-

ence between the two external reservoirs, eV = µβ − µα.
We now turn to analyze some details corresponding

to the different possible choices of boundary conditions
imposed by the chemical potentials of the reservoirs. Let
us begin examining this issue with a brief review of the
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transport behavior of the metal loop threaded by a flux
Φ(t) = Φt in contact to only one reservoir analyzed in
detail in reference [21]. When the ring is connected to
only one lead, all the currents, i.e. that along the loop
and that between the loop and the reservoir, display an
oscillating behavior as functions of time with the period
τ = 2πΦ/Φ0. The latter effect is due to the Bloch oscil-
lations in the system, which are driven by the induced
constant electric field and which result as a consequence
of the coherent propagation of the carriers along the loop.
The connection to the lead and reservoir introduces in-
elastic scattering events which attenuates the amplitude
of the oscillations while introduces a dc-component in the
current along the ring. The dc-component of the current
between ring and reservoir is, however, always zero, irre-
spective the strengths of the inelastic scattering, the elec-
tric field and the chemical potential of the reservoir. The
lead, thus plays a passive role, in the sense that neither
pumps nor sucks a net amount of charge in the loop. The
dc-current and the conductance of the device so defined
correspond to Kubo picture, since the only driving force is
the induced electric field. In the case of the two terminals
considered here, caution must be taken in defining con-
ditions that represent passive leads. In fact, an arbitrary
choice for the difference µβ − µα = eV , generates, in gen-
eral, a non-vanishing dc-component of the currents Jdc

N,β

and Jdc
1,α. To define Kubo conductance in this geometry

and to constraint the leads to play a passive role, we fix eV
in order to satisfy Jdc

N,β = Jdc
1,α = 0, which implies that the

net charge transport along the ring is driven by the electric
field alone. The calculation of V satisfying this constraint
is accomplished in the numerical solution of the problem.
The integrals (12) are evaluated numerically. As explained
in Appendix A, the retarded Green function is obtained
from the solution of set (27). We define the Kubo current
as the dc-component of the current flowing along the ring
under the above mentioned conditions,

JK =
1
τ

∫ τ

0

dtJl,l+1(t). (16)

Note that since the leads do not transport any dc-current,
JK does not depend on the particular bond considered for
the calculation of Jl,l+1(t).

The geometry to define Landauer conductance corre-
sponds to a problem which is independent of time. We
start from the general time-dependent formulation, we
perform the gauge transformation (9) and consider af-
terward the operation of cutting the loop. The latter is
achieved by taking the limit T ′ → 0 at the constric-
tion. In addition, the chemical potentials are considered
as boundary conditions that match the drop Vl of the
scalar potential. Thus, the difference is fixed to satisfy
µβ − µα = �Φ/Φ0. The latter condition allows for a net
charge current to flow from one of the reservoirs to the
other traveling along the chain. This compensates the oth-
erwise interruption due to the cut of the circuit imposed by
the vanishing hopping element at the constriction. In Ap-

pendix B it is shown that the resulting expression for JL is

JL =
2e

�
σ2

∫ +∞

−∞

dω

2π
[fβ(ω) − fα(ω)]

∣∣G0
1,N (ω)

∣∣2 , (17)

where G0
1,N (ω) is the Green function of the problem de-

fined by the “unperturbed” part H0 of the Hamilto-
nian (11) (H with T ′ = 0). Note that in the limit T ′ = 0,
where the loop is cut, the non-conservative forces that
drive the movement of charge along the circuit are inter-
rupted. Formally, this implies that the Hamiltonian de-
scribing the system does no longer depend on time and
that there are no frequency shifts introduced by the trans-
formation (10). As a consequence, the chemical potentials
in the evaluation of JL are µβ and µα, i.e. directly those
of the reservoirs. Instead, when the loop is closed (T ′ �= 0)
the effective chemical potentials µeff

β and µeff
α take into ac-

count not only the chemical potentials of the reservoirs but
also the shifts due to the presence of the induced emf. An-
other detail is that in the literature it is frequently found
the evaluation of JL by considering Φ = 0 in the eval-
uation of G0

1,N (ω). This procedure is valid only for very
small Φ, in which case JL can be approximated by a lin-
ear function of Φ. In this setup, the transmission function
analogous to (15) reads

TL(ω, ∆) = [fα(ω − ∆) − fα(ω)]
∣∣G0

1,N (ω)
∣∣2 , (18)

where ∆ = �
−1eV .

To close this section we mention that we also con-
sider an “interpolating” configuration between the above
mentioned Landauer and Kubo geometries, which corre-
sponds to the full time dependent problem with a finite,
but small 0 < T ′ ≤ T (a constriction). The chemical po-
tential difference is fixed to satisfy the matching condi-
tion with the scalar potential drop. Taking into account
the energy shifts introduced by the gauge transformation,
this corresponds to µeff

β − µeff
α = �Φ/Φ0, which is equiva-

lent to consider eV = µβ − µα = �φ in the evaluation of
the “transmission” functions (15) and the currents (12).
We emphasize that when the loop is closed, the effective
chemical potentials in the evaluation of the currents are
not the bare ones of the reservoirs, but those modified
by the presence of the emf. It is, therefore, the differ-
ence between them the relevant one to define a bound-
ary condition equivalent to that of Landauer geometry.
As discussed previously, this condition allows for a net
flow of charge between the reservoirs and the loop. Then,
Jdc

N,β = −Jdc
1,α �= 0 and the current along the loop results

as the combined effect of this flow and the movement of
charge driven by the induced emf. The latter relation be-
tween the currents along the leads can be inferred from
geometrical considerations.

2.3 The dissipated energy

When the coupling with external elements like leads and
reservoirs is taken into account, the ring behaves as an
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open system that exchanges not only electrons but also
energy. This issue was analyzed by Büttiker [16] in a
ring coupled to a single lead connected to a reservoir
while threaded by a magnetic flux with an harmonic time-
dependence. Although the physical situation in that case
corresponds to a wire exposed to a microwave field and
it is somewhat different from the one considered in the
present work, the feature to highlight is the dissipation of
energy originated in the coupling to the external system.
In what follows, we explain how to calculate exactly the
energy dissipated when a dc-current is flowing along our
wire by using the nonequilibrium Green function formal-
ism.

We recall that we assume that the Hamiltonian (2)
describes the ring as well as the environment. The macro-
scopic leads behave as a thermal bath and their contact
with the small system enables the absorption of energy
supplied by the external field. An estimate of the rate at
which the energy is transferred from the field into the bath
through the metallic ring is given by the variation of the
average energy Ering stored in the ring per unit time,

P (t) =
Ering

dt
= − i

�
〈[Hring, H ]〉 , (19)

being H the full Hamiltonian (2). In terms of Green func-
tions it can be written as,

P (t) =
2
�
Re

[
Tα(Te−iφtG<

2,α(t, t) + T ′eiφtG<
N,α(t, t))

+ Tβ

(
TeiφtG<

N−1,β(t, t) + T ′e−iφtG<
1,β(t, t)

) ]
. (20)

After some algebra on the Dyson equation for the above
lesser Green functions and assuming a wide-band model
for the systems α and β, it is obtained

P (t) =
2σ

�

∫ +∞

−∞

dω

2π

{
fα(ω − φ)

[
T Im

(
G

R

2,1(t, ω)
)

+ σRe
( (

TG
R

2,1(t, ω) + T ′ei Φ
Φ0

tG
R

N,1(t, ω)
)

× G
A

1,1(ω, t)+
(
TG

R

N−1,1(t, ω) + T ′e−i Φ
Φ0

t
G

R

1,1(t, ω)
)

× G
A

1,N (ω, t)
)]

+fβ

(
ω− Φ

Φ0

)[
T Im

(
G

R

N−1,N(t, ω)
)

+ σRe
( (

TG
R

N−1,N(t, ω) + T ′e−i Φ
Φ0

tG
R

1,N (t, ω)
)

× G
A

N,N(ω, t) +
(
TG

R

2,N(t, ω)

+ T ′ei Φ
Φ0

tG
R

N,N(t, ω)
)
G

A

N,1(ω, t)
)]}

, (21)

which can be evaluated numerically by solving the equa-
tions for the retarded Green functions as indicated in Ap-
pendix A. This quantity is an oscillating function of time
with the period τ of the Bloch oscillations. The dissipated
power is given by

PD =
1
τ

∫ τ

0

dtP (t). (22)

Fig. 3. Currents along the wire corresponding to Landauer
(squares) and Kubo (circles) geometries as functions of the
induced scalar potential �Φ/Φ0 for a chain of N = 200 sites
with σ = 0.8T and µα = −T . The linear approximation for JL

is indicated in dashed lines. Inset: The voltage V = (µβ−µα)/e,
consistent with the condition of vanishing currents in the leads
in the Kubo case.

3 Results

The behavior of the Kubo and Landauer currents JK

and JL as functions of the voltage �Φ/Φ0 between the
ends of the wire is shown in Figure 3 for a chain with
N = 200 sites. We have also analyzed other lengths corre-
sponding to chains with a number of sites between N = 20
and N = 2000 without finding significant quantitative
changes in the dc-response. The particular value σ = 0.8T
in the self energy correction due to the escape to the leads
has been assumed in the simulations. For T ′ �= 0 the cur-
rents display an oscillating behavior as a function of t
similar to that observed in the case of only one lead [21].
At each step of our calculations we verified the continuity
of the dc-current by evaluating it explicitly along the dif-
ferent components of the circuit as a check of consistency
of our approach.

For the case of the Landauer current the dashed lines
indicate the result for the linear approximation corre-
sponding to consider Φ = 0 in the evaluation of G0

1,N (ω).
For the case of the Kubo current it is shown in the inset
the chemical potential difference µβ − µα = eV that, for
each value of Φ, is consistent with the constraint of vanish-
ing current in the leads (Jdc

1,α = Jdc
N,β = 0). In this way, the

current through the bond 〈1, N〉 is the same as the cur-
rent along the other arm of the ring. The external leads
connected to the reservoirs play the role of dissipators and
do not pump neither suck charge in the ring.

The most salient feature in the results shown in Fig-
ure 3 is the fact that JK is larger than JL within the
range of interest Φ/Φ0 < T . The difference between the
two kind of responses is not enormous but sizable within
our numerical precision. The remaining part of this section
is devoted to the analysis of this discrepancy. To this end
we refer to the set of equations (27) which provides the
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solution for the retarded Green function. This set is ob-
tained by performing the Fourier transform at fixed time t
in the Dyson equation for the retarded Green function (cf.
Eq. (13)). It can be seen that the same set is obtained by
writing the Dyson equation for the retarded Green func-
tion of a problem defined by the effective “noninteracting”
Hamiltonian

H0
eff =

∑
n,ν

(
Eν + n�

Φ

Φ0

)
|ν, n〉〈ν, n| (23)

and the “perturbation”

H ′
eff = −T1N(t)|1, n〉〈N, n + 1| − TN1(t)|N, n + 1〉〈1, n|,

(24)
where Eν and |ν〉 are the eigenvalues and the correspond-
ing eigenvectors of the Hamiltonian H0 defined in (11),
which represents an open N-site chain in the presence of
a linear bias of slope �φ. In such a scheme, t plays just
the role of an external parameter or an additional coor-
dinate, while the relevant variable defining the dynamical
behavior of the Green function is t − t′ or, after perform-
ing the Fourier transform, the corresponding frequency ω.
The integer n in Heff = H0

eff + H ′
eff runs −∞ ≤ n ≤ ∞.

This redefinition of the problem is equivalent to that
introduced by Shirley [24,25] to solve the Schrödinger
equation of a time-periodic Hamiltonian by recourse to
Floquet theorem. The label n corresponds to the Floquet
modes, which appear in the latter theory as a conse-
quence of the periodic nature of the time-dependence of
the original Hamiltonian. From the physical point of view
we must relate these modes in our problem with the ex-
istence of Bloch oscillations. We can borrow the analy-
sis performed in reference [24] and compare the effective
Hamiltonian Heff with the Hamiltonian of electrons in in-
teraction with some quantized field. One can distinguish
two main differences: (i) The range of n is 0 ≤ n ≤ ∞ and
(ii) the off diagonal matrix elements T1N ∝ √

n for the
case of a quantized field. Since both differences become
small for a large number of quanta, the states |n〉 can be
identified with some quantized field with a large number
of quanta carrying each an energy quantum �Φ/Φ0. Given
this analogy between the Dyson equation at fixed t, and
the problem of electrons coupled to some quantized field,
we are led to understand the larger conductance in the
case of the Kubo geometry as originated by the tunneling
of the electrons through the bond 〈1, N〉 assisted by the
coupling to the quantum modes associated with the Bloch
oscillations.

We also analyzed the more general situation indicated
in Figure 2, which corresponds to a geometrical arrange-
ment similar to that used to define Kubo conductance,
but with a constriction. The difference between the two
chemical potentials is µβ −µα = �φ, which corresponds to
the matching condition µeff

β −µeff
α = �Φ/Φ0, as explained

in Section 2.2. Results are shown in Figure 4 for the cases
T ′ = T (perfect ring) and T ′ = 0.1T (ring with constric-
tion). These boundary conditions, allow for the flow of
current between the ring and the reservoirs, which, for the
case of the perfect ring, results in a larger current J along

Fig. 4. Currents along the wire for the boundary conditions
of Landauer geometry µβ − µα = φ for T ′ = T (filled circles)
and T ′ = 0.1T (filled squares) in a chain with N = 200 sites,
σ = 0.8T and µα = −T . JL and JK are indicated in open
circles and crosses for comparison.

the wire in comparison to the case of Kubo boundary con-
ditions. The fact that J for these boundary conditions is
significantly larger than JL is in agreement with the idea
of assisted tunneling as a mechanism to increase the dc-
component of the current. Note that a constriction in the
system implies a weaker coupling between the electrons
and the Floquet quanta which results in a response very
close to that obtained for the Landauer geometry.

To gain more insight on the role of the Floquet modes
let us examine the structure of the transmission func-
tions T (t, ω, ∆) and TL(ω, ∆). The behavior of these two
functions is strikingly different and is illustrated in Fig-
ure 5. The most relevant features to note are: (i) TL(ω, ∆)
is always a positive function and exhibits peaks at frequen-
cies corresponding to the energy levels of the uncoupled
wire (eigenvalues of H0), with a width due to the cou-
pling to the leads. It is quite straightforward to associate
this function with the probability for the electrons to be
transmitted from one lead to the other when a chemical
potential difference eV is established between them. In-
stead, T (t, ω, ∆) can be negative as well as positive, while
it exhibits a very complicated structure of peaks. The lat-
ter effect is a result of the coupling to the Floquet modes,
which originate exchange of spectral weight between dif-
ferent levels of H0. For very slow variations of the mag-
netic flux, the energy quantum �Φ/Φ0 is smaller than the
typical energy difference between the levels of H0 and the
structure related to them appears as peaks that are regu-
larly spaced in energy by the amount �Φ/Φ0. This is better
appreciated in the behavior of the integrated weight

I(t, ∆) =
∫ +∞

−∞
dωT (t, ω, ∆), (25)

as shown in the upper panel of Figure 6. In this figure,
the integrated weight corresponding to TL(ω, ∆) is also
shown for two different values of Φ/Φ0. In Kubo setup, the
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Fig. 5. The transmission function T (ω,∆, t = 0) for a ring of
L = 200 sites with σ = 0.8T and µα = −T The upper (lower)
panel corresponds to �Φ/Φ0 = 0.05T (�Φ/Φ0 = 0.3T ), respec-
tively. The plots in thick lines correspond to the transmission
function TL(ω,∆) for the equivalent parameters.

current along the wire is proportional to the time-average
of I(t, ∆K), with ∆K = �

−1eV + Φ/Φ0, where eV is fixed
to obtain a vanishing current along the leads (cf. inset of
Fig. 3). In the case of the generalized configuration with
constriction, the current along the wire is proportional to
the time-average of I(t, ∆L), with ∆L = Φ/Φ0. The cur-
rent in Landauer setup is proportional to the integral of
TL(ω, ∆L). (ii) The other issue worth to be mentioned
is that TL(ω, ∆) is exactly zero for ω < µα. This re-
flects the fact that in Landauer picture, the only levels
of the small system that contribute to the flow of charge
are those with energies lying between the two chemical
potentials. Instead, T (t, ω, ∆) have nonvanishing weight
even for ω < µα, and its integration contributes to the
finite time-dependent current along the ring, as shown
in Figure 6. The time-average of this current has a non-
vanishing dc-component. This behavior is due to the fact
that in this kind of geometry only one lead (i.e. only one
external chemical potential) is enough to generate a finite
dc-current along the ring, since the driving force is the in-
duced electric field, while the only role played by the lead
is to provide a channel for the dissipation of energy [21].

Increasing (decreasing) the size of the system, it is
obtained a similar pattern for the transmission functions
with more (less) peaks. The width of the peaks is changed
by changing σ, which depends on the strength of the con-
tact and the bandwidth of the leads. The change of these
parameters would not modify significantly the basic be-

Fig. 6. The integrated weight I(∆, t = 0) for the plots of Fig-
ure 5. The dashed line corresponds to Landauer geometry. The
arrows in the upper panel indicate some of the features regu-
larly spaced in Φ/Φ0 corresponding to the Floquet modes. The
arrows in the lower panel indicate ∆L (large arrow) and ∆K

(small arrow).

havior of T (t, ω, ∆). We want to stress that, although the
current through the wire is related to the time-average
of I(t, ∆), we have considered a situation with a rather im-
portant strength of dissipation σ (note the sizable width
of the peaks in Fig. 5). Since dissipation tends to wipe out
the time-dependent features of T (t, ω, ∆), the data shown
in Figures 5 and 6 is representative of the behavior of the
time-averaged functions.

We also recall that the calculation of the Kubo cur-
rent and the current in the more general situation ana-
lyzed in Figure 4 when T ′ = T , differ just in the values
adopted by ∆ (∆K and ∆L, respectively), due to the dif-
ferent boundary conditions chosen in each case. So, the
origin of the large magnitude of the current, in compar-
ison to that obtained in Landauer setup is the same in
both cases, namely, the peculiar behavior of the trans-
mission function due the coupling between the electronic
degrees of freedom and the effective Floquet modes. The
situation is, instead, different for the case of the ring with
a constriction (also shown in Fig. 4). The behavior of the
transmission function and the integrated weight is shown
in Figure 7 for T ′ = 0.1T . It can be seen that T (t, ω, ∆)
is quite close to the transmission function TL(ω, ∆) and
that the integrated weight I(t, ∆) is essentially the same
as in the case of Landauer geometry.

To close this section, we analize the behavior of the dis-
sipated power. In reference [16], this quantity has been cal-
culated within first order perturbation theory for the case
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Fig. 7. The transmission function T (ω,∆, t = 0) and the in-
tegrated weight I(∆, t = 0) (inset) for a ring with a constric-
tion T ′ = 0.1T , L = 200 sites, σ = 0.8T , �Φ/Φ0 = 0.3T and
µα = −T . The transmission function TL(ω,∆), correspond-
ing to Landauer setup, is plotted with thick lines in the main
panel.

of a field with an harmonic time-dependence. However,
the limit of zero frequency corresponding to the case we
study here has not been considered and the explicit func-
tional relation between this quantity and the electric field
and induced current has not been analyzed. In Figure 8 we
show the dissipated power as a function of Φ/Φ0 computed
from equations (21) and (22). We have verified in all the
calculations that PD =

∑
l P

l
D, with P l

D = Jl,l+1�φ. Af-
ter noting that the electric field is E = �φ/a, we identify
the typical form for the dissipated power due to the Joule
effect. This provides a nontrivial check of the numerical
precision and consistency of our approach.

4 Summary and conclusions

We considered a simple mesoscopic wire of noninteracting
electrons and studied its transport properties. We ana-
lyzed different geometrical configurations in order to com-
pare the predictions of the two popular Landauer and
Kubo definitions for the conductance. Resistive effects
were included by coupling the wire to leads in contact
with external particle reservoirs. We used a theoretical ap-
proach based in Baym-Kadanoff-Keldysh non-equilibrium
Green functions. We computed the currents through the
different pieces of the circuit and the dissipated power
independently. We have verified that the latter is propor-
tional to the dc-component of the current and to the in-
duced electric field, thus obeying the typical law for the
Joule effect.

We found that the current through the wire in the
Kubo geometry is larger than the Landauer current. We
explained this difference as caused by the coupling of the
electrons with the effective “quanta” originated by the
time-periodic structure of the Hamiltonian in the Kubo
case. These effective “quanta” are equivalent to the Flo-

Fig. 8. Dissipated power. The parameters and boundary con-
ditions are the same as in Figure 4.

quet modes defined in some theoretical approaches to solve
the Shrödinger equation with time-periodic Hamiltonians.
In our case, we relate them with the existence of Bloch os-
cillations. The coupling of the electrons with these modes
provide a mechanism for assisted tunneling which results
in a larger current in comparison to that obtained with the
Landauer setup under the same conditions of applied volt-
age and dissipation strength. Even sizable, the difference
between both currents is not very large. Other ingredients
present in more realistic systems, like electron-electron in-
teractions and or electron-phonon interactions, and fur-
ther dissipative channels, would contribute to break the
coherence in the electronic propagation. This would cause
an effective weaker coupling between the electrons and the
Floquet modes, which would yield to the same response
in the two geometries. However, for small and clean wires
at low temperatures, within the scale where the electronic
coherence is maintained, Bloch oscillations should be ob-
served in the Kubo geometry [21] and the dc-component of
the current should differ from that predicted by Landauer
formula. Our results are in agreement with those of pre-
vious works [18] where Kubo response was defined in a
similar experimental condition to that considered in the
present work.

There are still some important issues left to the future.
One point is a detailed study of the effect of interactions
and additional degrees of freedom like phonons. The other
fundamental point is related with the energy dissipation:
According to our intuition we would expect the wire to
heat the environment and to have some high “tempera-
ture” and it is interesting to investigate the possibility of
defining this concept in some effective way.
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Appendix A: Calculation of the retarded
Green functions

We formally separate the problem as indicated in (11), by
defining an “unperturbed” part H0 that describes an open
tight-binding chain plus a “perturbation” H1,N (t) corre-
sponding to the time-dependent hopping between the first
and the last sites of the chain. Following the procedure of
reference [21], it is shown that the final equation for the
retarded Green function can be written as

G
R

m,n(t, ω) = G0
m,n(ω) − G

R

m,N

(
t, ω +

Φ

Φ0

)

× TN1(t)G0
1,n(ω) − G

R

m,1

(
t, ω − Φ

Φ0

)
T1N (t)G0

N,n(ω),

(26)

with

G
R

m,1(t, ω) + G
R

m,N

(
t, ω +

Φ

Φ0

)
TN1(t)G0

1,1(ω)

+ G
R

m,1

(
t, ω − Φ

Φ0

)
T1N (t)G0

N,1(ω) = G0
m,1(ω)

G
R

m,N (t, ω) + G
R

m,N

(
t, ω +

Φ

Φ0

)
TN1(t)G0

1,N (ω)

+ G
R

m,1

(
t, ω − Φ

Φ0

)
T1N(t)G0

N,N (ω) = G0
m,N (ω).

(27)

For each time t, the solution of the above set of linear equa-
tions provides the complete exact solution of the problem.
The set (27) involves in principle an infinite number of
equations. In the numerical solution, a cutoff for the en-
ergy is assumed. Since the spectrum corresponding to H0

is bounded, the upper (lower) cuttof is typically assumed
to be bigger (smaller) than the highest (lowest) eigenen-
ergy Eν .

The equilibrium Green function G0
m,n(ω) corresponds

to the problem of an open chain in contact with the reser-
voirs. It is obtained from the solution of the Dyson equa-
tion

G0
m,n(ω) = g0

m,n(ω) + G0
m,1(ω)Σ1(ω)g0

1,n(ω)

+ G0
m,N (ω)ΣN (ω)g0

N,n(ω), (28)

where

g0
m,n(ω) =

N∑
ν=1

Aν
mAν

n

1
ω − Eν + iη

(29)

with η = 0+ is the Green function of the unconnected
chain, which can be expressed in terms of the eigenval-
ues Eν and eigenvectors |ν〉 =

∑
l Aν

l |l〉 of H0.

Appendix B: Landauer formula

The geometrical configuration for the evaluation of Lan-
dauer conductance corresponds to T ′ = 0. In this case,
the current flowing through the system is the same as
that flowing through the connecting lead (J1α = Jl,l+1)
while the set of equations for the retarded Green function
reduces to G

R

m,n(t, ω) = G0
m,n(ω). From (28) it is easy to

prove that

Im
[
G0

1,1(ω)
]

= σ
(∣∣G0

1,1(ω)
∣∣2+∣∣G0

1,N (ω)
∣∣2) , (30)

which when replaced in (12) leads to the Landauer for-
mula (17).
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